Warm Up:

Solve the following Systems:

1.(x - 2y = 15)
$$\stackrel{?}{2} \rightarrow \stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -302.(6x + 7y = -9) \stackrel{?}{2} \rightarrow \stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -2$$

2x + 3y = 2 $\stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -2$
 $\begin{array}{c} 2x + 3y = 2 \\ \hline 2x + 3y = 2 \\$

Homework Answers

Page 28:

- 2. \overrightarrow{PT} , \overrightarrow{TP}
- 3. any two of the following: \overrightarrow{AR} , \overrightarrow{RA} , \overrightarrow{AT} , \overrightarrow{TA} , \overrightarrow{RT} , \overrightarrow{TR}
- **4.** any two of the following: \overrightarrow{MA} , \overrightarrow{MS} , \overrightarrow{AS} , \overrightarrow{AM} , \overrightarrow{SA} , \overrightarrow{SM}
- **8.** \overline{AC} or \overline{CA}
- 9. \overline{PQ} or \overline{QP}
- 10. \overline{TR} or \overline{RT} , \overline{RI} or \overline{IR} , and \overline{TI} or \overline{IT}
 - **18.** R is the midpoint of \overline{PQ} . X is the midpoint of \overline{WY} . Y is the midpoint of \overline{XZ} . No midpoints are shown in ΔABC .
- 21. \overrightarrow{AB} , \overrightarrow{AC}
- 22. \overrightarrow{PM} , \overrightarrow{PN}
- 23. \overrightarrow{XY} , \overrightarrow{XZ}
- 24. A B

Page 32:

- 1. (3, 4)
- **2.** (-9, 1.5)
- 3. (5.5, 5.5)
- 4. (-6, 44)
- **5.** Yes. The coordinates of the midpoint of a segment with endpoints (a, b) and (c, d) are found by taking the average of the x-coordinates, $\frac{a+c}{2}$, and the average of the y-coordinates, $\frac{b+d}{2}$. Thus the midpoint is $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$.
- 7. Find the midpoint, then find the midpoint of each half.
- **6.** (3, 2) and (6, 4). To get the first point of trisection, sum the coordinates of points A and B to get (9, 6), then multiply those coordinates by $\frac{1}{3}$ to get (3, 2). To get the second point of trisection, sum the coordinates of points A and B to get (9, 6), then multiply those coordinates by $\frac{2}{3}$ to get (6, 4). This works because the coordinates of the first point are (0, 0).

1.2 - Angles

Angle - formed by two rays that share a common endpoint

EXAMPLE A

Name all the angles in these drawings.

< VUT

LVUR

<T, <UTV, <VTU
<XAZ, ZAX
<YAZ, <ZAY

Lesson 1.2 Finding Angles

ering Geometry Kendall Hunt Publishing

Measure of an angle - < 180°

Reflex of an angle - 180° < angle < 360°

Page 35:

Use your protractor to measure these angles as accurately as you can. Which ones measure more than 90°?

Discovering Geometry ©2015 Kendall Hunt Publishing

Lesson 1.2 Finding Angle

Two angles are congruent if and only if they have the
same measure.
A ray is the angle bisector if it contains the vertex and divides the angle into two congruent angles.

Page 35

EXAMPLE C

Look for angle bisectors and congruent angles in the figures below.

- a. Name each angle bisector and the angle it bisects.
- b. Name all the congruent angles in the figure. Use the congruence symbol and name the angles so there is no confusion about which angle you mean.

Discovering Geometry ©2015 Kendall Hunt Publishing

