Warm Up:
Solve the following Systems:

$$
\begin{aligned}
& \text { 1. }(x-2 y=15)-2 \rightarrow-2 x+4 y=-302 .(6 x+7 y=-9) 2 \rightarrow 12 y+14 y= \\
& \begin{array}{l}
2 x+3 y=2 \rightarrow \frac{2 x+3 y=2}{\frac{7 y}{7}}=\frac{-28}{7} \quad(-4 x-5 y=5) 3 \\
x-2(-4)=15
\end{array} \frac{\rightarrow-12 x-15 y=15}{\frac{-y}{-1}=\frac{-3}{-1}} \\
& \begin{aligned}
x+8 & =15 \\
-8 & -8 \\
x & =7
\end{aligned} \quad \begin{array}{r}
y=-4 \\
(7,-4)
\end{array} \\
& y=3 \\
& -4 x-5(3)=5 \\
& -4 x-15=5 \\
& \begin{array}{l}
-\frac{4 x}{-4}=\frac{20}{-4} \quad(-5,3) \\
x=-5
\end{array} \\
& x=-5
\end{aligned}
$$

Homework Answers

Page 28:

2. $\overleftrightarrow{P T}, \overleftrightarrow{T P}$

3. any two of the following:

$$
\overleftrightarrow{A R}, \stackrel{R A}{ }, \overleftrightarrow{A T}, \overleftrightarrow{T A}, \stackrel{R T}{ }, \overleftrightarrow{T R}
$$

4. any two of the following: $\overleftrightarrow{M A}, \overleftrightarrow{M S}, \overleftrightarrow{A S}, \overleftrightarrow{A M}, \overleftrightarrow{S A}, \overleftrightarrow{S M}$
5. $\overline{A C}$ or $\overline{C A}$
6. $\overline{P Q}$ or $\overline{Q P}$
7. $\overline{T R}$ or $\overline{R T}, \overline{R I}$ or $\overline{I R}$, and $\overline{T I}$ or $\overline{I T}$
8. R is the midpoint of $\overline{P Q} \cdot X$ is the midpoint of $\overline{W Y} . Y$ is the midpoint of $\overline{X Z}$. No midpoints are shown in $\triangle A B C$.

Page 32:

6. $(3,2)$ and $(6,4)$. To get the first point of trisection, sum the coordinates of points A and B to get $(9,6)$, then multiply those coordinates by $\frac{1}{3}$ to get (3,2). To get the second point of trisection, sum the coordinates of points A and B to get $(9,6)$, then multiply those coordinates by $\frac{2}{3}$ to get $(6,4)$. This works because the coordinates of the first point are $(0,0)$.
1.2 - Angles

Angle - formed by two rays that share a common endpoint

to name this angle: $\angle T A P, \angle P A T$ $<A$

Name all the angles in these drawings.

$$
\begin{aligned}
& \angle R U V_{1}<1, \\
& \angle V U R \\
& \angle T, \angle U T V, \angle U T O \\
& \angle X A Z, Z A X \\
& \angle Y A Z, \angle Z A Y
\end{aligned}
$$

ring Geometry

Measure of an angle - < 180°
Reflex of an angle $-180^{\circ}<$ angle $<360^{\circ}$

The geometry tool you use to measure an angle is a protractor.

Step 1: Place the center mark of the protractor on the vertex.

Step 2: Line up the 0 -mark with one side of the angle.

Step 3: Read the measure on the protractor scale.

To show the measure of an angle, use an m before the angle symbol. For example, $m \angle Z A P=34^{\circ}$ means the measure of $\angle Z A P$ is 34 degrees.

Step 4: Be sure you read the scale that has the 0-mark you are using! The angle in the

Page 35:

> EXAMPLE B

Use your protractor to measure these angles as accurately as you can. Which ones measure more than 90° ?

Two angles are congruent if and only if they have the same measure.
 A ray is the angle bisector if it contains the vertex and divides the angle into two congruent angles.

Page 35

EXAMPLE C

Look for angle bisectors and congruent angles in the figures below.
a. Name each angle bisector and the angle it bisects.
b. Name all the congruent angles in the figure. Use the congruence symbol and name the angles so there is no confusion about which angle you mean.

angle bisector

