Warm Up: Solve the following Systems: 1.(x - 2y = 15) $$\stackrel{?}{2} \rightarrow \stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -302.(6x + 7y = -9) \stackrel{?}{2} \rightarrow \stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -2$$ 2x + 3y = 2 $\stackrel{?}{-2} \stackrel{?}{+} \stackrel{?}{+} \stackrel{?}{+} = -2$ $\begin{array}{c} 2x + 3y = 2 \\ \hline \\$ #### **Homework Answers** ### **Page 28:** - 2. \overrightarrow{PT} , \overrightarrow{TP} - 3. any two of the following: \overrightarrow{AR} , \overrightarrow{RA} , \overrightarrow{AT} , \overrightarrow{TA} , \overrightarrow{RT} , \overrightarrow{TR} - **4.** any two of the following: \overrightarrow{MA} , \overrightarrow{MS} , \overrightarrow{AS} , \overrightarrow{AM} , \overrightarrow{SA} , \overrightarrow{SM} - **8.** \overline{AC} or \overline{CA} - 9. \overline{PQ} or \overline{QP} - 10. \overline{TR} or \overline{RT} , \overline{RI} or \overline{IR} , and \overline{TI} or \overline{IT} - **18.** R is the midpoint of \overline{PQ} . X is the midpoint of \overline{WY} . Y is the midpoint of \overline{XZ} . No midpoints are shown in ΔABC . - 21. \overrightarrow{AB} , \overrightarrow{AC} - 22. \overrightarrow{PM} , \overrightarrow{PN} - 23. \overrightarrow{XY} , \overrightarrow{XZ} - 24. A B ## Page 32: - 1. (3, 4) - **2.** (-9, 1.5) - 3. (5.5, 5.5) - 4. (-6, 44) - **5.** Yes. The coordinates of the midpoint of a segment with endpoints (a, b) and (c, d) are found by taking the average of the x-coordinates, $\frac{a+c}{2}$, and the average of the y-coordinates, $\frac{b+d}{2}$. Thus the midpoint is $\left(\frac{a+c}{2}, \frac{b+d}{2}\right)$. - 7. Find the midpoint, then find the midpoint of each half. - **6.** (3, 2) and (6, 4). To get the first point of trisection, sum the coordinates of points A and B to get (9, 6), then multiply those coordinates by $\frac{1}{3}$ to get (3, 2). To get the second point of trisection, sum the coordinates of points A and B to get (9, 6), then multiply those coordinates by $\frac{2}{3}$ to get (6, 4). This works because the coordinates of the first point are (0, 0). ## 1.2 - Angles Angle - formed by two rays that share a common endpoint #### **EXAMPLE** A Name all the angles in these drawings. < VUT LVUR <T, <UTV, <VTU <XAZ, ZAX <YAZ, <ZAY Lesson 1.2 Finding Angles ering Geometry Kendall Hunt Publishing Measure of an angle - < 180° Reflex of an angle - 180° < angle < 360° # Page 35: Use your protractor to measure these angles as accurately as you can. Which ones measure more than 90°? Discovering Geometry ©2015 Kendall Hunt Publishing Lesson 1.2 Finding Angle | Two angles are congruent if and only if they have the | |---| | same measure. | | A ray is the angle bisector if it contains the vertex and divides the angle into two congruent angles. | | | | | ## Page 35 #### **EXAMPLE C** Look for angle bisectors and congruent angles in the figures below. - a. Name each angle bisector and the angle it bisects. - b. Name all the congruent angles in the figure. Use the congruence symbol and name the angles so there is no confusion about which angle you mean. Discovering Geometry ©2015 Kendall Hunt Publishing